Official course description:

Full info last published 16/01-23
Course info
ECTS points:
Course code:
Participants max:
Offered to guest students:
Offered to exchange students:
Offered as a single subject:
Price for EU/EEA citizens (Single Subject):
10625 DKK
BSc in Data Science
Course manager
Assistant Professor
Course semester
Efterår 2022
29 August 2022
31 January 2023
Exam type
intern censur
Grade Scale
Exam Language
The course is an introduction to software engineering, software development, and object-oriented programming for students of BSc in Data Science and BSc in Global Business IT. The overarching goal is to allow students to work successfully within a professional software engineering setting.


  • principles of software engineering
  • software architectures and design patterns
  • object-oriented analysis and design with UML as modeling language
  • object-oriented implementation with Java as programming language
Formal prerequisites

  • Working knowledge of an imperative programming language (e.g., Python).
  • Understanding of/appreciation for common problems in designing and developing software.

Intended learning outcomes

After the course, the student should be able to:

  • Explain the essentials of all primary facets of software engineering.
  • Model and implement medium-scale object-oriented software systems.
  • Apply time-proven solutions to common recurring software design problems.
  • Integrate individual development with existing software designs.
Learning activities

  • Lectures to acquire theoretical foundations of programming in an object-oriented programming language and general principles of software engineering.
  • Interactions on selected small examples to train application and award the chance for immediate (self-)assessment.
  • Self-contained exercises on specific topics of software development and software engineering with portions of preparation, class-room work, individual tutoring and homework.
  • Comprehensive project developing an object-oriented application with software engineering principles to train and connect individual skills.

Course literature

There is no MANDATORY reading for the course. However, there is a list of SUGGESTED relevant literature. As the course comprises two distinct (but complementary) phases for Java programming and Software Engineering techniques, literature is divided into respective categories. If you pick one of the first two categories and one for Software Engineering, you should have a good accompanying read:

Literature for the Java Portion of the Course

- Java for Data Science – Richard M. Reese, Jennifer L. Reese
- Mastering Java for Data Science – Alexey Grigorev
- Java Data Science Cookbook – Rushdi Shams
- Data Science with Java – Michael R. Brzustowicz

Good Programming in General

- The Pragmatic Programmer – Andrew Hunt
- Clean Code – Robert C. Martin
- How to Use Objects – Holger Gast

Literature for the Software Engineering Portion of the Course

- Software Engineering – Ian Sommerville
- Beginning Software Engineering – Rod Stephens
- Software Engineering: A Practitioner's Approach – Roger S. Pressman

Student Activity Budget
Estimated distribution of learning activities for the typical student
  • Preparation for lectures and exercises: 10%
  • Lectures: 20%
  • Exercises: 20%
  • Assignments: 10%
  • Project work, supervision included: 20%
  • Exam with preparation: 20%
Ordinary exam
Exam type:
A: Written exam on premises, Internal (7-point scale)
Exam variation:
A33: Written exam on premises on paper with restrictions
Exam duration:
4 hours
Aids allowed for the exam:

Exam type:
A: Written exam on premises, Internal (7-point scale)
Exam variation:
A33: Written exam on premises on paper with restrictions

Time and date