Official course description, subject to change:
Preliminary info last published 15/11-19

Big Data Processes

Course info
Language:
English
ECTS points:
7.5
Course code:
KBBIDAP1KU
Participants max:
90
Offered to guest students:
yes
Offered as a single subject:
yes
Price (single subject):
10625 DKK (incl. vat)
Programme
Level:
MSc. Master
Programme:
Master of Science in Information Technology (Digital Innovation and Management)
Staff
Course semester
Semester
Forår 2021
Start
25 January 2021
End
28 May 2021
Exam
Exam type
ordinær
Internal/External
ekstern censur
Grade Scale
7-trinsskala
Exam Language
GB
Abstract
The goal of the course is to make students able to manage and use data sets, e.g. by learning about tools for data interpretation and visualization, and to reason about the use of data in larger contexts.
Description

Organizations increasingly employ processes for collecting, generating, storing, governing and analyzing large amounts of data. Such Big Data Processes, based on the discovery of meaningful patterns and insights in large datasets, can be used to explain and predict complex phenomena.

In this class we will engage hands-on with all of the stages of a typical big data project, around a specific case. This includes the collection and generation of data, as well as its visualization and analysis for critical insights. We reflect on the technological and societal implications, and limitations, at every relevant stage of the process. This includes discussions of how to derive value from big data processes as well as ethical and legal issues such as for instance the use of personal data.
Formal prerequisites

This course is available to all DIM students. Non-DIM students should have basic literacy in a programming language (for instance R or Python), corresponding to an introductory course in programming or equivalent.

Intended learning outcomes

After the course, the student should be able to:

  • Analyse and discuss technological and societal trends around Big Data
  • Analyse and discuss how organizations can derive value from critical insights
  • Design a process and develop a model to derive insights from case related data
  • Conduct and report analytical insights gained from working with a case project, through visualization and metrical outputs
  • Analyse and discuss individual and societal implications of Big Data processes
Ordinary exam
Exam type:
C: Submission of written work, external (7-trinsskala)
Exam variation:
CG: Submission of written work for groups.