Official course description:

Full info last published 25/10-19
Course info
ECTS points:
Course code:
Participants max:
Offered to guest students:
Offered to exchange students:
Offered as a single subject:
Price for EU/EEA citizens (Single Subject):
10625 DKK
MSc. Master
MSc in Games
Course manager
Assistant Professor
Part-time Lecturer
Course semester
Efterår 2019
26 August 2019
31 January 2020
Exam type
ekstern censur
Grade Scale
Exam Language

Students attending this course will be able to implement core algorithms of Computer Graphics.


Computer graphics is used to visualise data in video games, virtual & augmented reality, simulations, and many other areas, like medicine and data visualisation. This course provides an overview over the most important concepts of 3D computer graphics.

Students implement the major components of a traditional projective rendering pipeline: 

  • model and viewing transformations 
  • perspective projection
  • Gouraud and Phong shading
  • shaders
  • texture mapping and bump mapping

In addition, the student will be supervised in the acquisition of specialized knowledge in the graphics-programming area of their choice. Example topics include: 

  • parameterized surfaces 
  • physically based rendering
  • particle systems
  • voxel rendering

Formal prerequisites

Students need to be able to perform basic programming tasks and have a foundational understanding of discrete mathematics, especially vector and matrix operations.

Intended learning outcomes

After the course, the student should be able to:

  • Outline the software and hardware architecture of OpenGL
  • Implement interactive graphics using OpenGL
  • Describe light/material interaction and how it relates to the Phong lighting model
  • Program GLSL shaders for the Phong lighting model and other effects.
  • Use linear algebra to perform the transformations between coordinate spaces in the graphics pipeline
  • Implement applications with scene graphs, textures, shaders, and lights
  • Explain the math and theory behind virtual cameras in computer
  • Describe advanced rendering techniques such as shadow maps and deferred shading.
Learning activities

Foundational study in which text and online resources provide the background for in-depth programming assignments. Classes will also include supervised project work and introductions to advanced topics.

Besides traditional lectures the class will also include class-based discussions and small quizzes to make the students reflect about the topics. 

Weekly exercises are not handed in but their solutions are published after one week. 

Both the weekly exercises and the final project are solved individually.

Course literature

The course literature is published in the course page in LearnIT.

Ordinary exam
Exam type:
D: Submission of written work with following oral, external (7-trinsskala)
Exam variation:
D22: Submission of written work with following oral exam supplemented by the work submitted.
Exam description:

Submission of an individual project including source code, binaries (if any) and a short report describing the implementation details and the theory used. 

The exam will cover both the curriculum as well a project. 

Oral exam: 20 min.

Time and date